Mark scheme - Aromatic Compounds

Questi on	Answer/Indicative content	Marks	Guidance
i		$\begin{array}{\|c} 2 \\ (\mathrm{AOO} 2.5 \\ \times 2) \end{array}$	
ii	Reactivity of B in B electrons are localised OR in $B \pi$-bond is localised \checkmark Reactivity of C in C electrons are delocalised OR In C π-system / ring is delocalised In B, electron density is higher AND B is more susceptible to electrophilic attack OR B attracts/accepts the electrophile/ Cl_{2} more OR B polarises the electrophile/ Cl_{2} more \checkmark ORA	$\begin{gathered} 3 \\ (\mathrm{AO} 1.1 \\ \times 3) \end{gathered}$	ALLOW labelled diagram to show delocalised system IGNORE charge density IGNORE electronegativity IGNORE B is more reactive/reacts more readily (no reference to electrophile) IGNORE references to electron density spread around the π-ring ALLOW chlorine Examiner's Comments Candidates answered this question well. Many were able to correctly use the terms delocalised and localised in their responses and were able to provide comparisons for both electron density and attack of an electrophile.
	Generation of electrophile $\mathrm{AlCl}_{3}+\mathrm{Cl}_{2} \rightarrow \mathrm{AlCl}_{4}^{-}+\mathrm{Cl}^{+} \checkmark$ Attack of Cl^{+} Curly arrow from m-bond to $\mathrm{Cl}^{+} \checkmark$ \qquad Intermediate and organic product		ANNOTATE ANSWER WITH TICKS AND CROSSES ALLOW $\mathrm{FeCl}_{3}+\mathrm{Cl}_{2} \rightarrow \mathrm{FeCl}_{4}^{-}+\mathrm{Cl}^{+}$ ALLOW use of Fe NOTE: curly arrows can be straight, snake-like, etc. but NOT double-headed or halfheaded arrows 1st curly arrow must - start from, OR close to, circle of benzene ring

2

Delocalised has: π ring (system) / all p orbitals overlap OR (π electrons) spread around ring / overlap in both directions / 6 electrons in π bond /

ALLOW from labelled diagram showing π bond e.g.

OR
 π bond/ π electrons label is required for second mark

ALLOW diagram showing π bond in both Kekule
AND delocalised models e.g

Kekule

AND

Delocalised
π bond labels not required for third mark

Examiner's Comments

Candidates found this question difficult. The majority of the cohort referred to the overlap of p orbitals in either the Kekulé or delocalised model. The best responses developed this idea further and made reference to π bonds above and below the bonding carbon atoms. Although some candidates were able describe the difference between the two models, the responses of others lacked detail. Describing conceptual ideas, such as orbital overlap and π bonds, is understandably tricky. Candidates are advised to draw diagrams. These serve as a good basis from which to construct a written response. Exemplar 5 shows how effective the use of diagrams can be.

Exemplar 4

Simplartiles - Both.models ..nvalve .the Sideuraus, overiap.a....

....a.trigandi...planar shape.... w.ith bond analeo. Cf 1.20°
..........Bath Cotlc....
Diskerences sidewals

....... 6 carbms whereas kecule leads to 3 ..ा monas....

Delocana otr uciur mare sapilut

Level 2 (3-4 marks)

Describes, in detail, an electrophilic reaction and mechanism of one aliphatic OR one aromatic compound.
OR
Describes electrophilic reactions and mechanisms of one aliphatic AND one aromatic compound, with few omissions/errors.

There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence.

Level 1 (1-2 marks)

Selects suitable reagents for electrophilic reactions of one aliphatic
AND one aromatic compound.
OR
Attempts to describe an electrophilic reaction and mechanism of one aliphatic OR one aromatic compound, with omissions/errors.

There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.

0 marks No response or no response worthy of credit.
. Suitable reaction, e.g. ethene and Br_{2} May be shown within mechanism
Mechanism, e.g.

Reaction of aromatic compound and mechanism

Suitable reaction, e.g. benzene $+\mathrm{Cl}_{2}$;

- HNO_{3}

May be shown within mechanism Mechanism, e.g.

Examples of a detailed description (NOT INCLUSIVE)

- Electrophile as electron pair acceptor
- Types and names of mechanisms
. Equations for generation of electrophile
- and regeneration of catalyst

Accurately positioned and directed

- curly arrows and charges/ dipoles included
- Explanation of major and minor product
- from electrophilic addition

Examiner's Comments

Overall, this part was answered well.

Good answers were well organised, showing clear mechanisms with precisely positioned curly arrows.

Most candidates included a clear definition of an electrophile and were able to select appropriate reactions. Most candidates were familiar with the mechanisms for electrophilic addition and electrophilic substitution. Mechanisms of an alkene with HBr or Br 2 and benzene with $\mathrm{NO}_{2}{ }^{+}$or Br^{+} were the most commonly seen. Most candidates showed the role of a catalyst in electrophilic substitution.

Common errors/omissions were the direction of the curly arrow from the aromatic ring to the electrophile, the

		Product from Br_{2} e.g.		ALLOW substitution of any H from benzene ring ALLOW multiple substitution, i.e. di-, triand tetrabromo products. IGNORE connectivity of phenol OH group (marks are for correct conversions) Examiner's Comments This question assessed different reactions of compound $\mathbf{H}, 4$-hydroxybenzoic acid, and discriminated well. Two of the reactions focused on acid-base chemistry, using the reagents $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaOH . Many candidates recognised that the carboxylic acid group would react in both cases but only some managed to identify when the phenol group was involved correctly. A number of responses suggested that a phenoxide ion was formed with sodium carbonate but not with sodium hydroxide. The third reaction was substitution with bromine. This reaction appeared more familiar to all candidates with the majority scoring this mark. A small proportion of candidates substituted the phenol OH group or carboxylic acid group.
		Total	3	
5	a	Number of peaks 2 marks 2-nitrophenol AND 3-nitrophenol have six peaks/environments/types of carbon \checkmark 4-nitrophenol has four peaks/environments/types of carbon \checkmark Statement 1 mark 4-nitrophenol can be distinguished OR 2-nitrophenol and 3-nitrophenol cannot be distinguished \checkmark	3	IGNORE any numbers shown on structures ALLOW 1 mark only IF a response identifies that all the compounds have 6 peaks/environments/types of C OR all the compounds have 4 peaks/environments/types of carbon IGNORE chemical shifts DO NOT ALLOW ECF from an incorrect number of peaks/environments/types of carbon Examiner's Comments

			This question required candidates to apply their knowledge of ${ }^{13} \mathrm{C}$ NMR spectroscopy to deduce the number of different carbon environments in each of the nitrophenols shown. The best responses were succinct, stating that it is possible to distinguish 4ntirophenol from the other two after deducing the correct number of carbon environments for each compound. Lower ability candidates' responses did not identify the symmetry in 4-nitrophenol and suggested all three compounds would produce six peaks, therefore making it impossible to distinguish between them.
	(In phenol) a (lone) pair of electrons on O is(partially) delocalised/donated into the π-system / ring \checkmark Electron density increases/is higher (than benzene) \checkmark ORA (phenol) is more susceptible to electrophilic attack OR (phenol) attracts/accepts electrophile/ HNO_{3} more OR (phenol) polarises electrophile/ $/ \mathrm{HNO}_{3}$ more \checkmark ORA	3	ALLOW the electron pair in the p-orbitals of the O atom becomes part of the π system / ring ALLOW diagram to show movement of lone pair into ring ALLOW lone pair of electrons on O is (partially) drawn/attracted/pulled/ into π system / ring IGNORE activating IGNORE charge density IGNORE electronegativity IGNORE phenol reacts more readily (no reference to electrophile) ALLOW NO${ }_{2}{ }^{+}$for electrophile Examiner's Comments The relative reactivity of phenol is well known by candidates at this level and the majority scored two or three marks. Candidates who did not score full marks gave imprecise or vague explanations. This included reference to 'higher charge density' or 'higher electronegativity' of the phenol ring, rather than 'higher electron density'.
b	Curly arrow from m-bond to S in SO_{3} AND	3	ANNOTATE WITH TICKS AND CROSSES NOTE: curly arrows can be straight, snake-like, etc. but NOT double headed or half headed arrows 1st curly arrow must

Correct intermediate \checkmark

Curly arrow from C-H bond to reform π-ring \checkmark

- go to the S of SO_{3}
AND
- start from, OR close to circle of benzene ring

2nd curly arrow must start from, OR be traced back to, any part of $\mathrm{S}=\mathrm{O}$ bond and go to O

ALLOW 2nd curly arrow from $\mathrm{S}=\mathrm{O}$ to any O in SO_{3}

Intermediate must have correct $\mathrm{SO}_{3}{ }^{-}$ structure fully displayed

DO NOT ALLOW the following intermediate:

π-ring must cover more than half of the benzene ring structure
AND
the correct orientation, i.e. gap towards C with $\mathrm{SO}_{3}{ }^{-}$

ALLOW + sign anywhere inside the 'hexagon' of the intermediate.

DO NOT ALLOW mark for intermediate if
CH 3 is missing
curly arrow must start from, OR be traced back to, any part of C-H bond and go
inside the 'hexagon'

					Examiner's Comments This question required candidates to apply their understanding of electrophilic substitution to the reaction of methylbenzene with sulfur trioxide. Examiners were encouraged by the quality of responses to this question. Most candidates secured full marks in this part. Some candidates did not show the curly arrow for the breaking of the $\mathrm{S}=\mathrm{O}$ bond, while others omitted the methyl group from the intermediate. Exemplar 4 shows an excellent response. Exemplar 4 This response demonstrates an excellent example for candidates to follow. Curly arrows are drawn accurately, with each arrow touching the bond it starts from. The intermediate has been drawn clearly, using all the space provided. The 'horseshoe' has been drawn accurately over five of the carbon atoms with the positive charge shown neatly in the centre.
			Total	9	
6	a	i	Generation of electrophile $\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{HSO}_{4}^{-}+\mathrm{NO}_{2}^{+} \checkmark$ Electrophilic substitution	5	ANNOTATE ANSWER WITH TICKS AND CROSSES $\begin{aligned} & \text { ALLOW } \mathrm{HNO}_{3}+2 \mathrm{H}_{2} \mathrm{SO}_{4} ? \mathrm{H}_{3} \mathrm{O}^{+}+2 \mathrm{HSO}_{4}^{-} \\ & +\mathrm{NO}_{2^{+}} \end{aligned}$

Level 2 (3-4 marks)

Attempts all three scientific points but explanations may be incomplete.
OR

Explains two scientific points thoroughly with very few omissions.

The description of checking for purity or recrystallisation is clear and any calculations structured. Key terminology used appropriately.

Level 1 (1-2 marks)

A simple explanation based on at least two of the main scientific points.

OR

Explains one scientific point thoroughly with few omissions.
There is an attempt at a logical structure. The description of the practical techniques provides some detail but may not be in the correct order.

- Purification step is unclear with few scientific terms and little detail, e.g. just 'recrystallise'.
- Calculation is difficult to follow, may just include a calculation of moles of reactants and/or products.
- Purity check specifies a method but this is unclear with little detail, e.g. take melting point.

0 marks

No response or no response worthy of credit.

- $n\left(3\right.$-nitrobenzoic acid) made $=\frac{4.85}{167}=0.0290(\mathrm{~mol})$
percentage yield $=\frac{0.0290}{0.0407} \times 100=71.3(\%)$ percentage yield $=\frac{0.0207}{0.0407} \times 100=71.3(\%)$

ALLOW 71 to calculator value of 71.29001554 correctly rounded.

CHECK for extent of errors by ECF

Alternative correct calculation may calculate theoretical mass of 3nitrobenzoic acid that can be produced as $0.0407 \times 167=6.80(\mathrm{~g})$ followed by: percentage yield $=\frac{4.85}{6.80} \times 100=71.3(\%)$

Calculation must attempt to calculate n (benzoic acid) in mol.
3. Checking purity

- Obtain melting point
- Compare to known values
- Pure sample will have a (sharp) melting point very close to data book value

ALLOW alternative approach based on spectroscopy or TLC

Spectroscopy

- Run an NMR/IR spectrum
- Compare to (spectral) database
- Spectrum of pure sample will contain same peaks and not others

TLC

- Run a TLC
- Compare (R_{f} value) to known data
- Pure sample will have a very similar R_{f}

Examiner Comments

This question tested some of the practical techniques covered as part of the practical endorsement as well as requiring candidates to calculate a percentage yield for the reaction. This proved to be quite a

c	i	Bromination: Br_{2} AND $\mathrm{A} / \mathrm{Br}_{3} / \mathrm{FeBr}_{3} / \mathrm{Fe} \checkmark$ Reduction: Sn AND (concentrated) HC/ \checkmark	3	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW any suitable halogen carrier catalyst ALLOW Kekulé structure IGNORE names (question asks for formulae) IGNORE reaction conditions even if incorrect IGNORE 'dilute' for $\mathrm{HC} /$ IGNORE H2 IGNORE NaOH if seen as a reagent to convert nitro group into amine e.g 'Sn/(concentrated) HC/ then NaOH^{\prime} scores the mark Examiner Comments Candidates were able, in the main, to provide the reagents for bromination and reduction. The structure of the intermediate compound in the preparation of 3-bromophenylamine proved to be straightforward, however common errors involved the omission of the halogen carrier catalyst for bromination or stating names rather than formulae as indicated in the question.
	ii	NH_{2} is 2,4 directing \checkmark Products (1 mark for each):	3	IGNORE references to electron donating/withdrawing groups ALLOW $-\mathrm{NH}_{2}$ activates the ring causing the new group to join at positions 2 and 4 . ALLOW ortho and para directing for 2,4 directing IGNORE 6-directing ALLOW Kekulé structure IGNORE names Examiner Comments The most able candidates completed this question with a clear statement that the $-\mathrm{NH}_{2}$ group was 2,4 directing and provided two clearly drawn structures of 2bromophenylamine and 4bromophenylamine. The most common errors observed included drawing two structures that were identical and explaining the two structures in terms of electron donation from the $-\mathrm{NH}_{2}$

				without any indication of positioning. Candidates using the terms ortho and para directing were awarded full marks for their answers.
		Total	21	
7	i		1	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous
	ii	Any organic reaction in which sulfuric acid is a catalyst e.g: Elimination of $\left(\mathrm{H}_{2} \mathrm{O}\right.$ from) alcohols Nitration of benzene Esterification Hydrolysis of esters/amides	1	The answer needs to refer to the reaction: i.e. 'Elimination', 'hydrolysis' are insufficient but 'Esterification' describes the reaction DO NOT ALLOW oxidation for alcohols/ aldehydes
		Total	2	
8	a	One mark for each correct structure/reagent/condition as shown below	6	ANNOTATE ANSWER WITH TICKS AND CROSSES ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous IGNORE names of organic compounds (question asks for structures) ALLOW aluminium(III) chloride OR aluminium trichloride ALLOW $\mathrm{FeCl}_{3} \mathrm{OR} \mathrm{Fe}$ as halogen carrier in first step. ALLOW sodium borohydride OR sodium tetrahydridoborate IGNORE [H] for reducing agent in second step
	b	Use as an organic feedstock \checkmark	1	ALLOW the production of plastics or monomers

		actual n (salicylic acid) produced $=\frac{4.83}{138}=0.035(0)(\mathrm{mol}) \checkmark$ theoretical $n(\text { phenol })=n(\text { salicylic acid })=0.035(0) \times \frac{100}{45.0}=0.0778(\mathrm{~mol}) \checkmark$ Mass of phenol $=0.0778 \times 94.0=7.31(\mathrm{~g}) \checkmark$		ALLOW 3 SF up to calculator value correctly rounded for intermediate values 100 ALLOW expected mass compound \mathbf{E} $=4.83 \times \frac{100}{45.0}=10.733(\mathrm{~g})$ ALLOW Mass phenol reacted $=0.035 \times$ $94.0=3.29(\mathrm{~g})$ ALLOW Mass of phenol used $=3.29 \times$ 100 $\overline{45.0}=7.31(\mathrm{~g})$ Note: 1.48 g would get 2 marks (use of 45.0/100 instead of 100/45.0) 7.30 g would get 2 marks (use of 0.0777 for moles phenol)
	b	 Skeletal formula of ethanoic acid	2	IF skeletal formulae are not used ALLOW one mark if both the structures of aspirin AND ethanoic acid are correct IGNORE names
		Total	10	
0	i		2	ALLOW skeletal formula ALLOW correct structural OR displayed

M2 curly arrow from mring OR from within the ring to ${ }^{+} \mathrm{NO}_{2} \checkmark$

M3 correct intermediate (with charge) \checkmark

M4 curly arrow from C-H to reform ring AND correct products $\sqrt{ }$
ANNOTATE WITH TICKS AND CROSSES ETC.
Equation to show formation of the electrophile

ALLOW $2 \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3}$
$\rightarrow{ }_{2} \mathrm{HSO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{2}{ }^{+}$

ALLOW $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow \mathrm{HSO}_{4}^{-}+$ $\mathrm{H}_{2} \mathrm{NO}_{3}{ }^{+}$
AND $\mathrm{H}_{2} \mathrm{NO}_{3}{ }^{+} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NO}_{2}{ }^{+}$

Penalise missing or incorrect $-\mathrm{NHCOCH}_{3}$ on intermediate only (M3)

DO NOT ALLOW intermediate with the π system covering less than half the ring

ALLOW + charge anywhere inside the 'horseshoe'
Horseshoe must have open end towards NO_{2}

ALLOW Kekulé mechanism

OR

ALLOW $\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HSO}_{4}^{-}$
$\mathrm{H}^{+}+\mathrm{HSO}_{4}^{-} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4} \checkmark$

b		$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHBr}+\mathrm{FeBr}_{3} \longrightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}^{+}+\mathrm{FeBr}_{4}{ }^{-}$		ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW positive charge anywhere on the electrophile IGNORE AICl 3 OR AIBr 3 Examiner's Comments Well answered by those candidates who could apply their knowledge and understanding to new situations. It was a step too far for some who stuck to the more familiar equation for the generation of the Br^{+}electrophile instead. Others made a good attempt but made errors with the charges.
c	c i	First reactant $=\mathrm{HNO}_{2} \checkmark$ Second reactant $=$ Third reactant $=$	3	ALLOW $\mathrm{NaNO}_{2}+\mathrm{HCl}$ OR $\mathrm{HNO}_{2}+\mathrm{HCl}$ IGNORE conditions / concentration ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW Examiner's Comments This question required candidates to recognise changes in chemical structure. The first reaction (the formation of a diazonium ion) and the third reaction (the formation of an amide linkage) should be

			OR use natural chiral molecules OR single isomers (as starting materials) \checkmark		catalyst OR stereoselective transition metal complex / catalyst ALLOW 'chiral pool' / chiral auxiliary Examiner's Comments Two chiral centres and four optical isomers was required in the mark scheme and less specific answers did not score the first two marks. Two pairs of enantiomers was an accurate description worthy of the mark and a reference to there being four enantiomers was also given credit. The majority of candidates scored only the third mark with their suggestion of how to improve the synthesis. Some candidates missed the point here and instead described techniques required to separate the optical isomers.
			Total	16	
1 3	a	i		1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous DO NOT ALLOW -O—Na OR -COO-Na (covalent bond) ALLOW - O^{-} ALLOW delocalised carboxylate Examiner's Comments The question asked for the product of the reaction with excess sodium hydroxide. Many answers included the product formed by the reaction of just one of the functional groups. Most commonly the phenol group was left unreacted. The mark scheme permitted the omission of the cation from the formula of the compound but this omission was rarely seen.
		ii	(Bromine) would be decolourised / turn (from orange / red / yellow / brown) to colourless	1	IGNORE goes clear

ALLOW 2-propanol

DO NOT ACCEPT incorrect name or
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH} / \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3} /$ propan(-)2(-)ol

AND acid / $\mathrm{H}^{+} / \mathrm{H}_{2} \mathrm{SO}_{4}$ (catalyst)

IGNORE reflux / concentrated (acid)

Examiner's Comments

Many candidates correctly gave the formula for propan-2-ol and included an acid catalyst. Common non-scoring answers omitted the acid or the alcohol or gave an incorrect name for the alcohol.

Curly arrow to Br from ring OR from within the ring AND curly arrow $\mathrm{Br}-\mathrm{Br}$ bond to $\mathrm{Br} \checkmark$
b i
\checkmark correct intermediate (with charge)
\checkmark curly arrow from C-H to reform ring

\checkmark Correct products
(Br may be shown in the first step)

ALLOW mechanism with Br^{+}electrophile (Maximum 3 marks)

IGNORE any equations involving a halogen carrier
\qquad
\qquad

BUT DO NOT ALLOW intermediate with π-system covering less than half of ring:

ALLOW + charge anywhere inside the 'horseshoe'

Horseshoe must have open end towards Br

Apply ecf to error in structure of intermediate (M2)

ALLOW Kekulé mechanism as shown
(Maximum 3 marks if Br^{+}is the electrophile)

ALLOW double bonds in alternate arrangement

Many fully correct and clearly structured mechanisms were seen. A proportion of candidates did not score full marks because they ignored the information in the question and based their mechanism on the Br^{+}electrophile and did not finish

				with HBr as a product. Relatively few candidates lost marks for incorrectly positioned curly arrows.
	ii	(In salicylic acid) lone pair / pair of electrons on $\mathrm{O}(\mathrm{H})$ / phenol is \sim (partially) delocalised into the ring \checkmark electron density increases / is high ORA \checkmark $\mathrm{Br}_{2} /$ electrophile is (more) polarised ORA \checkmark \mathscr{Z} QWC: delocalised / delocalized / delocalise etc. must be spelled correctly in the correct context at least once	3	ALLOW diagram to show movement of Ione pair into ring but delocalised ring must be mentioned ALLOW lone pair / pair of electrons on $\mathrm{O}(\mathrm{H}) /$ phenol is (partially) drawn / attracted / pulled into delocalised ring IGNORE 'activates the ring' ALLOW more electron rich DO NOT ALLOW charge density or electronegativity ALLOW (salicylic acid) attracts electrophiles more/more susceptible to electrophilic attack ALLOW Br_{2} is (more) attracted ${\mathrm{OR} \mathrm{Br}_{2} \text { is }}^{\text {is }}$ not polarised by benzene OR induces dipoles (in bromine / electrophile) Delocalise(d) needed to score the first marking point Examiner's Comments This question was very well answered with the majority of candidates scoring at least two marks. The most common errors were the omitting the words delocalised or lone pair or failure to use the word delocalised in the correct context.
c	i	Step 1 Step 2 Tin AND concentrated $\mathrm{HCI} \checkmark$	4	ALLOW reagent mark if HNO_{3} in equation IGNORE $\mathrm{H}_{2} \mathrm{SO}_{4}$ (NOTE: $\mathrm{H}_{2} \mathrm{SO}_{4}$ not required with phenols) IGNORE concentrations of acids / temperature ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous Equations MUST be completely correct for one mark each

				DO NOT ALLOW 3H2 Examiner's Comments This question discriminated well. Most candidates knew that nitric acid was involved in the first reaction but some also included sulfuric acid and tried to construct a mechanism involving the nitronium ion, rather than write the expected equation for the reaction. The omission of water as a product was an occasional error. Many correct equations were seen for Step 2, but tin and concentrated hydrochloric acid was required to score the reagent mark.
	ii	Nitrogen electron pair OR nitrogen lone pair accepts a proton / H^{+}V	1	DO NOT ALLOW nitrogen / N lone pair accepts hydrogen (proton $/ \mathrm{H}^{+}$required) ALLOW nitrogen donates an electron pair / lone pair to H^{+} IGNORE NH_{2} group donates electron pair Examiner's Comments Candidates needed to mention the electron pair on the nitrogen atom to score this mark.
	ii	compound \mathbf{A} \checkmark compound B	2	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous ALLOW $-\mathrm{N}_{2} \mathrm{Cl}$ OR $-\mathrm{N}_{2}{ }^{+} \mathrm{Cl}$ DO NOT ALLOW — $\mathrm{N} \equiv \mathrm{N}^{+} \mathrm{OR}-\mathrm{N} \equiv \mathrm{N}^{+} \mathrm{Cl}$. DO NOT ALLOW - $\mathrm{N}_{2}-\mathrm{Cl}$ (covalent bond) Examiner's Comments The vast majority of candidates gave the correct structure for compound B, but common errors were the omission of the chloride ion in the formulae of the diazonium salt, or placing the positive charge on the wrong nitrogen atom.
		Total	18	
4		Tm bonds in benzene are delocalised	1	

		Total	1	
		Electrophilic substitution means benzene ring Electrophilic addition means alkene / $\mathrm{C}=\mathrm{C}$ Isomer of $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{2}$ containing $\mathrm{C}=\mathrm{C}$, benzene ring AND COOH Correct isomer: justification in terms of number of carbon environments	5	Concluded using data provided and conclusions from 1st two marks. ALLOW 1 mark for: OR (does not gain final justification mark)
		Total	5	
	a	Experimental evidence - ANY TWO from carbon-carbon bond lengths are the same in benzene Enthalpy change of hydrogenation is less (exothermic) for benzene (than for Kekulé model) Discussion of named reaction to highlight greater stability, e.g. chlorination of benzene requires a catalyst whereas no catalyst is needed for alkenes Bonding in modern model p-orbitals overlap to form π bonds (π-)electrons are delocalised	4	ALLOW both marks for correctly labelled diagrams showing overlap of p-orbitals to form delocalised π-electrons
	b	Generation of electrophile $\mathrm{AlCl}_{3}+\mathrm{Cl}_{2} \rightarrow \mathrm{AlCl}_{4}^{-}+\mathrm{C}^{+}$ Electrophilic substitution Curly arrow from π-bond to Cl^{+} Correct intermediate	5	ANNOTATE ANSWER WITH TICKS AND CROSSES DO NOT ALLOW the following intermediate:

				OR induces dipoles (in chlorine / electrophile)
		Total	16	
$\begin{aligned} & 1 \\ & 7 \end{aligned}$	i		1	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW disubstituted compound with tertbutyl groups adjacent
	ii	(The student's friend is correct because) the lone pair of electrons on the oxygen atom(s) is donated to / partially delocalised into the π system making quinol more susceptible to electrophilic attack	3	ALLOW "the oxygen p-orbital overlaps with..." ALLOW diagrammatic answer for 1st and 2nd marks: 1st mark: π system $\mathbf{O R} 6 \times p$ orbitals shown 2nd mark: O lone pair OR O p-orbital AND interaction ALLOW undergoes electrophilic substitution more easily if 1st and 2nd marks achieved through diagram, conclusion must refer to diagram for 3rd mark
		Total	4	

