Mark scheme – Aromatic Compounds

Questi on	Answer/Indicative content	Marks	Guidance
1 i	Cl Cl Organic product with B Organic product with C	2 (AO2.5 ×2)	
ii	Reactivity of B in B electrons are localised OR in B π-bond is localised √ Reactivity of C in C electrons are delocalised OR In C π-system / ring is delocalised In B, electron density is higher AND B is more susceptible to electrophilic attack OR B attracts/accepts the electrophile/Cl₂ more OR B polarises the electrophile/Cl₂ more √ OR	3 (AO1.1 ×3)	ALLOW labelled diagram to show delocalised system IGNORE charge density IGNORE electronegativity IGNORE B is more reactive/reacts more readily (no reference to electrophile) IGNORE references to electron density spread around the π-ring ALLOW chlorine Examiner's Comments Candidates answered this question well. Many were able to correctly use the terms delocalised and localised in their responses and were able to provide comparisons for both electron density and attack of an electrophile.
ii i	Generation of electrophile $AlCl_3 + Cl_2 \rightarrow AlCl_4^- + Cl^+ \checkmark$ $Attack of Cl^+$ $Curly arrow from \pi-bond to Cl^+ \checkmark$ Intermediate and organic product	5 (AO1.2) (AO1.2) (AO2.5) (AO1.2) (AO1.2)	 ANNOTATE ANSWER WITH TICKS AND CROSSES ALLOW FeCl₃ + Cl₂ → FeCl₄⁻ + Cl⁺ ALLOW use of Fe NOTE: curly arrows can be straight, snake-like, etc.

bond electror

Delocalised

				This response starts with a diagram for both the Kekulé and delocalised models of benzene. Each diagram is clear and shows the p orbitals and π bonds separately. This is an excellent response for future candidates to follow. The candidate's written response is effectively a description of the diagrams they have drawn and describes the similarities and differences between these two models clearly. This response scored full marks and demonstrates the best style of response seen in this part.
	ii	Any 2 pieces of evidence from (√ √) Bond length (C-C) bond length is between single (C-C) and double bond (C=C) OR all (C-C) bond lengths are the same ΔH hydrogenation ΔH hydrogenation less (exothermic) than expected Resistance to reaction Benzene is less reactive than alkenes OR bornination of benzene requires a catalyst/halogen carrier OR benzene does not react with/decolourise bromine (at room temperature) OR benzene does not (readily) react by addition	2(AO 1.1 ×2)	 ALLOW (C–C) bond enthalpy is between single (C–C) and double bond (C=C) OR all (C–C) bond enthalpies are the same IGNORE enthalpy of hydration Benzene is unreactive is not sufficient (<i>no comparison to alkene</i>) For halogen carrier, ALLOW name or formula of suitable catalyst e.g. Fe, AlCl₃, FeBr₃ Examiner's Comments Candidates were well prepared for this question and the majority of the cohort scored two marks. The most common piece of evidence given was the lack of reactivity of benzene with bromine, with candidates citing the need for a catalyst for the reaction to occur. Responses also included reference to carbon-carbon bond lengths as well as the enthalpy of hydrogenation. A small but significant proportion of the cohort referred to hydration rather than hydrogenation.
		Total	5	
3		Refer to marking instructions on page 5 of mark scheme for guidance on marking this question. Level 3 (5–6 marks) Describes, in detail, electrophilic reactions and mechanisms of one aliphatic AND one aromatic compound. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated.	6	Indicative scientific points may include: <u>Explanation of role of electrophiles in</u> <u>organic chemistry</u> <u>Reaction of aliphatic compound and</u> <u>mechanism</u>

position of the curly arrow when H⁺ is lost from an aromatic intermediate, and not showing the lone pair when Br₋ attacks a carbocation.

Some answers lacked detail and gave only two mechanisms with minimal supporting words.

Lower ability candidates described nucleophilic addition or substitution as one of their mechanisms or had curly arrows going in the wrong direction.

A few candidates answered in prose without including equations or diagrams. Candidates are advised that mechanisms must always be communicated in the usual diagrammatic way.

Exemplar 16 is a very clear and concise response showing all the key features of electrophilic addition and electrophilic substitution, including the role of the FeCl₃ catalyst. Curly arrows are precisely positioned, with correct use of lone pairs and charges. The candidate has demonstrated excellent knowledge and understanding.

The response in Exemplar 17 is clearly at a different level. The candidate has chosen an alkane rather than an alkene and has used curly arrows and charges incorrectly. This candidate appears to have been poorly prepared.

Exemplar 16

[6] uding rele Electrophiles are electron pair acceptors; and can accept or pair of electrons how 211 Aliphatic: Electrophilic addition 1.17 N. 197 . es . Ņ H-H C Br C2H4+ MBr , -> C2H5Br Aromatic: electrophilic substitution Feel3 + Cl2 -> Feel4 + Cl °CL⁺ ditional answer space if required. \rightarrow Fell, -> HCL + Fell, + HCC

			Product from Br₂		ALLOW substitution of any H from benzene ring
			e.g. HO		ALLOW multiple substitution, <i>i.e.</i> di-, tri- and tetrabromo products. IGNORE connectivity of phenol OH group (marks are for correct conversions)
					Examiner's Comments This question assessed different reactions of compound H, 4-hydroxybenzoic acid, and discriminated well. Two of the reactions focused on acid-base chemistry, using the reagents Na ₂ CO ₃ and NaOH. Many candidates recognised that the carboxylic acid group would react in both cases but only some managed to identify when the phenol group was involved correctly. A number of responses suggested that a phenoxide ion was formed with sodium carbonate but not with sodium hydroxide. The third reaction was substitution with bromine. This reaction appeared more familiar to all candidates with the majority scoring this mark. A small proportion of candidates substituted the phenol OH group or carboxylic acid group.
			Total	3	
5	а	i	Number of peaks2 marks2-nitrophenol AND 3-nitrophenol have six peaks/environments/types of carbon √4-nitrophenol has four peaks/environments/types of carbon √Statement1 mark	3	IGNORE any numbers shown on structures ALLOW 1 mark only IF a response identifies that all the compounds have 6 peaks/environments/types of C OR all the compounds have 4 peaks/environments/types of carbon IGNORE chemical shifts
			4-nitrophenol can be distinguished OR 2-nitrophenol and 3-nitrophenol cannot be distinguished √		DO NOT ALLOW ECF from an incorrect number of peaks/environments/types of carbon <u>Examiner's Comments</u>

				This question required candidates to apply their knowledge of ¹³ C NMR spectroscopy to deduce the number of different carbon environments in each of the nitrophenols shown. The best responses were succinct, stating that it is possible to distinguish 4- ntirophenol from the other two after deducing the correct number of carbon environments for each compound. Lower ability candidates' responses did not identify the symmetry in 4-nitrophenol and suggested all three compounds would produce six peaks, therefore making it impossible to distinguish between them.
	11	(In phenol) a (Ione) pair of electrons on O is(partially) delocalised/donated into the π-system / ring √ Electron density increases/is higher (than benzene) √ ORA (phenol) is more susceptible to electrophilic attack OR (phenol) attracts/accepts electrophile/HNO ₃ more OR (phenol) polarises electrophile/HNO ₃ more √ ORA	3	ALLOW the electron pair in the p-orbitals of the O atom becomes part of the π-system / ring ALLOW diagram to show movement of lone pair into ring ALLOW lone pair of electrons on O is (partially) drawn/attracted/pulled/ into π-system / ring IGNORE activating IGNORE charge density IGNORE phenol reacts more readily (no reference to electrophile) ALLOW NO2 ⁺ for electrophile Examiner's Comments The relative reactivity of phenol is well known by candidates at this level and the majority scored two or three marks. Candidates who did not score full marks gave imprecise or vague explanations. This included reference to 'higher charge
				density' or 'higher electronegativity' of the phenol ring, rather than 'higher electron density'. ANNOTATE WITH TICKS AND
b			3	CROSSES NOTE: curly arrows can be straight, snake-like, etc. but NOT double headed or half headed arrows
		Curly arrow from π-bond to S in SO ₃ AND		1st curly arrow must

PhysicsAndMathsTutor.com

Level 2 (3–4 marks) Attempts all three scientific points but explanations may be incomplete.	• $n(3-nitrobenzoic acid) made = \frac{4.85}{167} = 0.0290$
OR	ercentage yield = $\frac{0.0290}{0.0407} \times 100 = 71.3$ (%)
Explains two scientific points thoroughly with very few omissions.	
The description of checking for purity or recrystallisation is clear and any calculations structured. Key terminology used appropriately.	ALLOW 71 to calculator value of 71.29001554 correctly rounded.
	CHECK for extent of errors by ECF
Level 1 (1–2 marks) A simple explanation based on at least two of the main scientific points.	Alternative correct calculation may
OR	calculate theoretical mass of 3-
Explains one scientific point thoroughly with few omissions.	nitrobenzoic acid that can be produced
There is an attempt at a logical structure. The description of the practical techniques provides some detail but may not be in the correct order.	0.0407 × 167 = 6.80 (g) followed by: percentage yield = $\frac{4.85}{6.80}$ × 100 = 71.3 (%
Purification step is unclear with few scientific terms and little	Calculation must attempt to calculate
detail, e.g. just 'recrystallise'.	<i>n</i> (benzoic acid) in mol. 3. Checking purity
 Calculation is difficult to follow, may just include a calculation of moles of reactants and/or products. 	
 Purity check specifies a method but this is unclear with little 	Obtain melting pointCompare to known values
detail, e.g. take melting point.	 Pure sample will have a (share)
0 marks No response or no response worthy of credit.	melting point very close to da book value
	ALLOW alternative approach based of spectroscopy or TLC
	Spectroscopy
	 Run an NMR/IR spectrum Compare to (spectral) databa Spectrum of pure sample will contain same peaks and not others
	TLC
	 Run a TLC Compare (<i>R</i>^f value) to known data Pure sample will have a very similar R^f
	Examiner Comments This question tested some of the pract techniques covered as part of the prace endorsement as well as requiring candidates to calculate a percentage y for the reaction. This proved to be quit

b i

	giving little de recrystallisati included a sta be allowed to then filtered to gain credit fo there was no dissolving in allowed to co filtration. High above and be marking sche discussing th the minimum obtain a satu wash and dry detail of the a required.	uestion with some candidates etail of how to carry out a on. Common answers atement that the solid should dissolve in a solvent and o obtain crystals. This did not r the scientific content as indication of the solid a hot solvent and then being ol before carrying out n quality answers often went eyond the requirements of the eme with some candidates e importance of dissolving in amount of hot solvent to rated solution, the need to r the crystals and provided apparatus and or method
	could be deter point of the p a value obtain comprehensi of the appara melting point how the melti sharper as im Common error carrying out a When carrying calculation, it answers only calculation. E candidates to not gain cred divided the m	ermined by taking the melting roduct and comparing this to ned from data book. The most we answers gave an indicated tus required to carry out the determination and discussed ng point becomes higher and opurities are removed. ors included comments about a boiling point determination. g out a percentage yield is important to round at the last stage of the carly rounding frequently led o obtain answers, which did it. Weaker Candidates bass of 3-nitrobenzoic acid by benzoic acid and obtained an .6%.
Phenol is the most easily nitrated/most reactive AND Benzoic acid is the least easily nitrated/least reactive √	reactivitye.g. nitrationphenol (to beORnitration becomein the tableExaminer ComeThe vast majgood answer	ust give rank order of becomes more difficult from inzene) to benzoic acid omes easier from right to left omments ority of candidates gave a to indicate that it was easier me nitration of phenol than

			benzene and that benzene would underg nitration easier than benzoic acid.
			ANNOTATE ANSWER WITH TICKS AN CROSSES
			ALLOW the electron pair in the p orbitals of the O atom becomes part of the p- system / ring
			ALLOW diagram to show movement of lone pair into ring ALLOW lone pair of electrons on O is (partially) drawn/attracted/pulled into p-system / ring
	Reactivity of phenol		IGNORE activating and deactivating.
	a (lone) pair of electrons on O is (partially) delocalised/donated into the p-system/ring		ALLOW the following alternatives for susceptibility to attack:
			 phenol attracts electrophiles / NO2⁺ more phenol polarises electrophiles / NO2⁺ more benzoic acid attracts electrophil / NO2⁺ less
ii	Reactivity of benzoic acid The –COOH group on benzoic acid is an electron withdrawing group \checkmark	3	benzoic acid polarises electrophiles / NO ₂ ⁺ less
	Links electron density in p-bond to reactivity		Examiner Comments The most able candidates scored well or
	In phenol electron density is higher		what proved a difficult question for many
	AND The ring is more susceptible to attack		Although the vast majority of candidates knew about the reasons behind phenol's increased reactivity many were unable to
	OR		express themselves clearly to gain credit Often answers lacked the specific detail
	In benzoic acid electron density is lower		about the lone pair on the oxygen atom i
	AND The ring is less susceptible to attack √		the -OH group being delocalised into the ring. Weaker answers discussed electron being supplied to the ring, the -OH group providing the electrons to the ring or just that -OH is an activator. Good answers
			expressed the increase in electron densi and the subsequent increase in phenol's susceptibility to electrophilic attack. The
			most able candidates were able to interpret the information given in the
			question to establish that the -COOH group must be electron withdrawing
			leading to decreased electron density of

с	i	Bromination: Br ₂ AND A/Br ₃ /FeBr ₃ /Fe \checkmark Intermediate \bigvee_{N_2} \bigvee_{Br} Reduction: Sn AND (concentrated) HC/ \checkmark	3	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW any suitable halogen carrier catalyst ALLOW Kekulé structure IGNORE names (question asks for formulae) IGNORE reaction conditions even if incorrect IGNORE 'dilute' for HC/ IGNORE 'dilute' for HC/ IGNORE H ₂ IGNORE NaOH if seen as a reagent to convert nitro group into amine e.g 'Sn/(concentrated) HC/ then NaOH' scores the mark Examiner Comments Candidates were able, in the main, to provide the reagents for bromination and reduction. The structure of the intermediate compound in the preparation of 3-bromophenylamine proved to be straightforward, however common errors involved the omission of the halogen carrier catalyst for bromination or stating names rather than formulae as indicated in
		NH ₂ is 2,4 directing \checkmark Products (1 mark for each): $\stackrel{NH_2}{\bigvee}$ $\stackrel{VH_2}{\bigcup}$ $\stackrel{H_2}{\bigcup}$ $\stackrel{H_2}{\bigcup}$	3	the question. IGNORE references to electron donating/withdrawing groups ALLOW –NH ₂ activates the ring causing the new group to join at positions 2 and 4. ALLOW ortho and para directing for 2,4 directing IGNORE 6-directing ALLOW Kekulé structure IGNORE names Examiner Comments The most able candidates completed this question with a clear statement that the –NH ₂ group was 2,4 directing and provided two clearly drawn structures of 2- bromophenylamine. The most common errors observed included drawing two structures that were identical and explaining the two structures in terms of electron donation from the –NH ₂

					without any indication of positioning. Candidates using the terms ortho and para directing were awarded full marks for their answers.
			Total	21	
7		i		1	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous
		ii	Any organic reaction in which sulfuric acid is a catalyst e.g: Elimination of (H ₂ O from) alcohols Nitration of benzene Esterification Hydrolysis of esters/amides	1	The answer needs to refer to the reaction: i.e. 'Elimination', 'hydrolysis' are insufficient but 'Esterification' describes the reaction DO NOT ALLOW oxidation for alcohols/ aldehydes
			Total	2	
8	а		One mark for each correct structure/reagent/condition as shown below $\label{eq:structure} (u_{t_{0}} - u_{t_{0}} - u_{t_{0}}$	6	ANNOTATE ANSWER WITH TICKS AND CROSSES ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous IGNORE names of organic compounds (<i>question asks for structures</i>) ALLOW aluminium(III) chloride OR aluminium trichloride ALLOW FeC/ ₃ OR Fe as halogen carrier in first step. ALLOW sodium borohydride OR sodium tetrahydridoborate IGNORE [H] for reducing agent in second step ALLOW H ⁺ / H ₂ SO ₄ / H ₃ PO ₄ / named mineral acid for reagent in third step
	b		Use as an organic feedstock \checkmark	1	ALLOW the production of plastics or monomers

	00		
	OR		or new polymers
	Combustion for energy production \checkmark		Combustion alone is not sufficient
	Total	7	
9 a i	Dipole shown on C=O bond, C ⁵⁺ and O ⁵⁻ , AND curly arrow from the C=O bond to the O ⁵⁻ atom AND Curly arrow from π -bond to C in CO ₂ \checkmark Correct intermediate \checkmark Curly arrow back from C–H bond to reform π -ring \checkmark 	3	ANNOTATE ANSWER WITH TICKS AND CROSSES DO NOT ALLOW the following intermediate: $\int_{++++++++++++++++++++++++++++++++++++$
ii	Neutralisation √ (In Stage 1) phenol loses H ⁺ AND (In Stage 3) carboxylate ion gains H ⁺ √	2	ALLOW acid-base ALLOW both Stage 1 AND Stage 3 involve proton transfer
ii i	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 7.31 (g) award 3 marks	3	ANNOTATE ANSWER WITH TICKS AND CROSSES
			ALLOW ECF at each stage

			actual $n(\text{salicylic acid}) \text{ produced} = \frac{4.83}{138} = 0.035(0) (\text{mol}) \checkmark$ theoretical $n(\text{phenol}) = n(\text{salicylic acid}) = 0.035(0) \times \frac{100}{45.0} = 0.0778 (\text{mol}) \checkmark$		ALLOW 3 SF up to calculator value correctly rounded for intermediate values 100 ALLOW expected mass compound E $= 4.83 \times 45.0 = 10.733 \text{ (g)}$ ALLOW Mass phenol reacted = 0.035 × 94.0 = 3.29 (g)
			Mass of phenol = 0.0778 × 94.0 = 7.31 (g) √		ALLOW Mass of phenol used = 3.29 × 100 45.0 = 7.31 (g) Note: 1.48 g would get 2 marks (use of 45.0/100 instead of 100/45.0) 7.30 g would get 2 marks (use of 0.0777 for moles phenol)
	b		Skeletal formula of aspirin \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	2	IF skeletal formulae are not used ALLOW one mark if both the structures of aspirin AND ethanoic acid are correct
			Total	10	
1 0		i	Ethanoic anhydride O $OH_3C C CH_3Other organic compoundCH_3COOH \checkmark$	2	ALLOW skeletal formula

			OR skeletal formulae OR a combination of above as long as unambiguous
			IGNORE names
			Examiner's Comments
			The structure of ethanoic anhydride was well known and most candidates gave the correct structure for the other organic product of the reaction.
			ANNOTATE WITH TICKS AND CROSSES ETC.
			ALLOW 3 SF: 0.0323 up to calculator value of 0.032258064 correctly rounded
	FIRST CHECK THE ANSWER ON THE ANSWER LINE		ALLOW 3 SF up to calculator value
	IF answer = 2.66 (g) award 3 marks		
	IF answer = 4.36 (g) award 2 marks (% yield not used)IF answer = 7.14 (g) award 2 marks (% yield used incorrectly)		Penalise rounding to 2 SF once ALLOW ECF on incorrectly rounded values
	n(phenylamine) (= 3.00/93.0) = 0.0323 mol √		Final answer must be expressed to 3 significant figures
	n(compound A) = (0.0323 x 0.61) = 0.0197 mol √		ALLOW ecf from incorrect Mr
	Mr (compound A) = 135		
ii	AND Mass of compound A = (135)(0.0197) = 2.66 g √	3	
	OR		
	n(phenylamine) (= 3.00/93.0) = 0.0323 mol √		
	Mr (compound A) = 135 AND Theoretical mass of compound A = $(0.0323 \times 135) = 4.36 \checkmark$ Actual mass of compound A = $(4.36 \times 0.61) = 2.66 \text{ g} \checkmark$		IF answer = 2.65 (g) award 2 marks unless this alternative method is used (3 marks) 93 g gives 135 g 3.00 g gives 135/93 x $3.00 = 4.35$ g 4.35 x $0.61 = 2.65$ g
			Examiner's Comments
			Once again it was clear that candidates had been well prepared for this type of percentage yield question. It was well answered with almost all candidates scoring some marks here and a high proportion gaining all three marks for the calculation.

			Examiner's Comments
			Although some lost marks through minor errors on the details, most candidates scored well on this question
	Total	10	
1	$ \begin{array}{c} $	1	 ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW disubstitution at any positions on benzene ring Examiner's Comments Generally well answered. Some candidates reacted compound B with only one mole of bromine or three moles of bromine and this underlines the importance of paying careful attention to information given in the stem of the question. Hydrogen, not HBr, was occasionally formed as the other product.
	Total	1	
1 a 2	M1 p-orbitals overlap (to form pi / π-bonds) ✓ M2 π-bond(s) are delocalised in structure B ✓ M3 π-bonds are localised / between two carbons in structure A ✓ M4	4	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC IGNORE p-orbitals overlap to form sigma bonds ALLOW electrons are delocalised in structure B IGNORE B has delocalised structure or ring (must be electrons or π-bonds) ALLOW π-electrons / p-orbital overlap localised / between two carbons in structure A ALLOW p-orbitals overlap with one other carbon IGNORE electrons are localised OR structure A has localised structure (must be π-bonds / π-electrons / p-orbital overlap) ALLOW labelled diagram showing overlap of p-orbitals between two carbon atoms DO NOT ALLOW C=C in this diagram

	OR correct position of p-orbital overlap \checkmark		
			IGNORE charge density
	#01W0		
	<i>™</i> QWC		DO NOT ALLOW electronegativity
	requires delocalised / delocalized spelled correctly and used in		
	correct context		Structures do not need to be labelled A and B if the description matches the
			structure
			Fueminerie Commente
			Examiner's Comments
			Many excellent answers with clear
			diagrams and explanations were seen. Delocalised electrons in structure B and p-
			orbital overlap were the most accessible
			marking points.
			ALLOW structure B is low in energy
			IGNORE structure B is less reactive
			ALLOW enthalpy change / hydrogenation
			for benzene is less (negative) than 3 \times
			(−)119 IGNORE more positive than (−)357 kJ
			mol ⁻¹
			ALLOW enthalpy change is less than 3x
			enthalpy change for cyclohexene ALLOW structure B is more stable by 149
			kJ mol ⁻¹ (2 marks)
			DO NOT ALLOW more / less energy
			needed for the reaction Answer must refer to data given in the
			question and must be a comparison
	structure B / delocalised structure is (more) stable \checkmark		IGNORE 360 kJ mol⁻¹
			No marks can be awarded if structure A is selected
i	structure B is a better because	2	
	(enthalpy change of hydrogenation for benzene is) less (exothermic) than (–) 357 (kJ mol ⁻¹) \checkmark		Examiner's Comments
			Many used the data given in the question
			to compare the enthalpy of hydrogenation of structure A and structure B but relatively
			few candidates scored the other mark for
			stating that structure B is better
			representation of benzene because it is more stable. Some candidates confused
			cyclohexene with structure A and
			incorrectly concluded that the
			hydrogenation of benzene is more exothermic than structure A . Some
			incorrectly referred to enthalpy of hydration
			or stated that energy is required for the
			reaction. Others referred to data they had
			memorised rather than using the information in the question as instructed.
			mormation in the question as institutied.

b	(CH₃)₂CHBr + FeBr₃ → (CH₃)₂CH ⁺ + FeBr₄ ⁻	1	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW positive charge anywhere on the electrophile IGNORE AICI ₃ OR AIBr ₃ Examiner's Comments Well answered by those candidates who could apply their knowledge and understanding to new situations. It was a step too far for some who stuck to the more familiar equation for the generation of the Br ⁺ electrophile instead. Others made a good attempt but made errors with the charges.
c i	First reactant = HNO ₂ \checkmark Second reactant = Br Br Hr Hr Hr Hr Hr Hr Hr Hr Hr Hr Hr Hr Hr	3	ALLOW NaNO ₂ + HCI OR HNO ₂ + HCI IGNORE conditions / concentration ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW ALLOW CI VIIII NH2 CI VIIIII NH2 CI VIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

				familiar to candidates. The reagents for the first reaction were very well known and although the conditions for the reaction were often quoted they were not required for the mark. The correct structure of the second reactant was rarely seen with the most common incorrect responses being based on cyclic structures. Most candidates were able to deduce the structure of the third reactant.
	ii	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 1.35 (g) award 3 marks IF answer = 0.54 (g) award 2 marks (no scale-up) IF answer = 0.216 (g) award 2 marks (incorrect scale-up) $n(\text{compound D}) = 1.73/346 = 0.00500 \text{ mol } \checkmark$ $n(1,3-\text{diaminobenzene}) \text{ required } = 100/40 \times 0.005$ $= 0.0125 \text{ mol } \checkmark$ Molar mass of 1,3-diaminobenzene = 108 (g mol ⁻¹) AND Mass of 1,3-diaminobenzene = (108)(0.0125) = 1.35 g \checkmark	3	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC If there is an alternative answer, check to see if there is any ECF credit possible ALLOW ECF from incorrect amount, scale-up or molar mass Alternative 1 n(compound D) = 1.73/346 = 0.00500 mol Molar mass of 1,3-diaminobenzene = 108 $(g mol^{-1})$ AND Mass of 1,3-diaminobenzene = (0.00500)(108) = 0.540 g Mass of 1,3-diaminobenzene required = (0.540)(100/40) = 1.35 g Alternative 2 346 g gives 108 g $1.73 g gives 108/364 \times 1.73 = 0.54 g$ $0.54/40 \times 100 = 1.35 g$ Examiner's Comments Candidates had been well prepared for this type of percentage yield question and it was very well answered with almost all candidates scoring marks here and a high proportion gaining all three marks for the calculation.
		(compound D has) two chiral centres √		ALLOW (Compound D) has two asymmetric carbons OR has two stereocentres
	ii i	Four optical isomers exist √	3	ALLOW four enantiomers OR two pairs of enantiomers
		(Synthesis could) use enzymes OR bacteria OR use (chemical) chiral synthesis OR chiral catalysts		INDEPENDENT MARK ALLOW biological catalysts ALLOW chiral transition metal complex /

			OR use natural chiral molecules OR single isomers (as starting materials) ✓		catalyst OR stereoselective transition metal complex / catalyst ALLOW 'chiral pool' / chiral auxiliary Examiner's Comments Two chiral centres and four optical isomers was required in the mark scheme and less specific answers did not score the first two marks. Two pairs of enantiomers was an accurate description worthy of the mark and a reference to there being four enantiomers was also given credit. The majority of candidates scored only the third mark with their suggestion of how to improve the synthesis. Some candidates missed the point here and instead described techniques required to separate the optical isomers.
			Total	16	
1 3	а	i	$ \begin{array}{c} $	1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous DO NOT ALLOW —O—Na OR -COO-Na (covalent bond) ALLOW —O ⁻ ALLOW —ONA ALLOW —COONA OR ALLOW delocalised carboxylate —
		ii	(Bromine) would be decolourised / turn (from orange / red / yellow / brown) to colourless	1	IGNORE goes clear

		OR white precipitate / solid / emulsion (formed) √		DO NOT ALLOW other colours for bromine IGNORE cream precipitate DO NOT ALLOW salicylic acid turns colourless / decolourised IGNORE temperature / fumes Examiner's Comments The observation for the reaction of a
				phenol with bromine was very well known and many candidates offered two correct observations when only one was required to score the mark.
	ii	H + Br ₂ \rightarrow H - OH - OH - OH - COOH - OH - COOH - OH -	1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous MUST be all correct to score mark ALLOW molecular formulae, i.e. $C_7H_6O_3 + Br_2 \rightarrow C_7H_5O_3Br^+ HBr$
	i	+ HBr	1	Examiner's Comments
		✓		A very well answered question. Most candidates copied the structural formulae given in the question. Some made errors when they unnecessarily converted the structures into molecular formulae. HBr was occasionally missing as a product.
				ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous
				ALLOW 2-propanol
	i	(CH ₃) ₂ CHOH / CH ₃ CH(OH)CH ₃ / propan(–)2(–)ol		DO NOT ACCEPT incorrect name or incorrect formula of alcohol
	v	AND acid / H⁺ / H₂SO₄ (catalyst) ✓	1	IGNORE reflux / concentrated (acid)
				Examiner's Comments
				Many candidates correctly gave the formula for propan-2-ol and included an acid catalyst. Common non-scoring answers omitted the acid or the alcohol or gave an incorrect name for the alcohol.

				with HBr as a product. Relatively few candidates lost marks for incorrectly positioned curly arrows.
				ALLOW diagram to show movement of lone pair into ring but delocalised ring must be mentioned
		(In salicylic acid)		ALLOW lone pair / pair of electrons on O(H) / phenol is (partially) drawn / attracted / pulled into delocalised ring
				IGNORE 'activates the ring'
		lone pair / pair of electrons on O(H) / phenol is \backsim (partially) delocalised into the ring \checkmark		ALLOW more electron rich
		electron density increases / is high ORA √		DO NOT ALLOW charge density or electronegativity
	ii		3	ALLOW (salicylic acid) attracts electrophiles more/more susceptible to electrophilic attack
		Br ₂ / electrophile is (more) polarised ORA \checkmark		ALLOW Br ₂ is (more) attracted OR Br ₂ is not polarised by benzene OR induces dipoles (in bromine / electrophile)
				Delocalise(d) needed to score the first marking point
		QWC : delocalised / delocalized / delocalise <i>etc</i> .		Examiner's Comments
		must be spelled correctly in the correct context at least once		This question was very well answered with the majority of candidates scoring at least two marks. The most common errors were the omitting the words delocalised or lone pair or failure to use the word delocalised in the correct context.
		Step 1		ALLOW reagent mark if HNO ₃ in equation
		Add HNO ₃ \checkmark + HNO ₃ \rightarrow $\land \land \land$		IGNORE H ₂ SO ₄ (NOTE: H ₂ SO ₄ not required with phenols)
с		COOH O ₂ N COOH H ₂ O	4	IGNORE concentrations of acids / temperature
	İ	√ Step 2		ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous
		Tin AND concentrated HC/ ✓		
				Equations MUST be completely correct for one mark each

\checkmark		DO NOT ALLOW 3H ₂ Examiner's Comments This question discriminated well. Most candidates knew that nitric acid was involved in the first reaction but some also included sulfuric acid and tried to construct a mechanism involving the nitronium ion, rather than write the expected equation for the reaction. The omission of water as a product was an occasional error. Many correct equations were seen for Step 2, but tin and <i>concentrated</i> hydrochloric acid was required to score the reagent mark.
ii Nitrogen electron pair OR nitrogen lone pair accepts a proton / H⁺ ✓	1	DO NOT ALLOW nitrogen / N lone pair accepts hydrogen (proton/H ⁺ required) ALLOW nitrogen donates an electron pair / lone pair to H ⁺ IGNORE NH ₂ group donates electron pair Examiner's Comments Candidates needed to mention the electron pair on the nitrogen atom to score this mark.
$\begin{bmatrix} i \\ i \\ i \end{bmatrix} compound A CINEN CINEN COMPOUND A CINEN CINE$	2	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous ALLOW $-N_2C/OR -N_2^+C/^-$ DO NOT ALLOW $-N\equiv N^+ OR -N\equiv N^+ CI.$ DO NOT ALLOW $-N_2$ -Cl (covalent bond) Examiner's Comments The vast majority of candidates gave the correct structure for compound B, but common errors were the omission of the chloride ion in the formulae of the diazonium salt, or placing the positive charge on the wrong nitrogen atom.
Total	18	
1 π bonds in benzene are delocalised	1	

6.1.1 Aromatic Compounds

PhysicsAndMathsTutor.com

		Total	1	
1 5		Electrophilic substitution means benzene ring Electrophilic addition means alkene / C=C Isomer of C ₉ H ₈ O ₂ containing C=C, benzene ring AND COOH Correct isomer: $\int_{OR}^{OOH} \int_{OC}^{COOH}$ justification in terms of number of carbon environments	5	Concluded using data provided and conclusions from 1st two marks. ALLOW 1 mark for: OR (does not gain final justification mark)
		Total	5	
1 6	а	 Experimental evidence – ANY TWO from carbon–carbon bond lengths are the same in benzene Enthalpy change of hydrogenation is less (exothermic) for benzene (than for Kekulé model) Discussion of named reaction to highlight greater stability, e.g. chlorination of benzene requires a catalyst whereas no catalyst is needed for alkenes Bonding in modern model p-orbitals overlap to form π bonds (π–)electrons are delocalised 	4	ALLOW both marks for correctly labelled diagrams showing overlap of p-orbitals to form delocalised π–electrons
	b	Generation of electrophile $A/Cl_3 + Cl_2 \rightarrow A/Cl_4^- + Cl^+$ Electrophilic substitution Curly arrow from π -bond to Cl^+ \downarrow^{CH_3} \downarrow^{Cl^+} Correct intermediate	5	ANNOTATE ANSWER WITH TICKS AND CROSSES DO NOT ALLOW the following intermediate:

				OR induces dipoles (in chlorine / electrophile)
		Total	16	
1 7	i	HO OH HO OH OH OH	1	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW disubstituted compound with <i>tert</i> - butyl groups adjacent
	ii	(The student's friend is correct because) the lone pair of electrons on the oxygen atom(s) is donated to / partially delocalised into the π system making quinol more susceptible to electrophilic attack	3	ALLOW "the oxygen p-orbital overlaps with" ALLOW diagrammatic answer for 1st and 2nd marks: 1st mark: π system OR 6 × p orbitals shown 2nd mark: O lone pair OR O p-orbital AND interaction ALLOW undergoes electrophilic substitution more easily if 1st and 2nd marks achieved through diagram, conclusion must refer to diagram for 3rd mark
		Total	4	